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Abstract. A two-dimensional, fully numerical approach to the four-component first-order Dirac-differential-
equation utilizing the Finite-Element-Method (FEM) is employed for H and Thi™*. Using elliptic-
hyperbolic coordinates and further one-dimensional singular transformations, scaling transformations and
extrapolation techniques (geometrical over iteration steps and logarithmic over grid points) we achieve for
the molecules Hf and Th™* relative accuracies better than 1072 for 1(1/2)g energies.

PACS. 02.70.Dh Finite-element and Galerkin methods — 03.65.Ge Solutions of wave equations: bound

states — 31.15.Ar Ab initio calculations

1 Introduction and method

The methods for the fully numerical treatment of diatomic
molecules, which have been established over more than a
decade, are the Finite-Difference-Method (FDM) [1] and
the Finite-Element-Method (FEM) [2-10]. For a given
number of node points the results achieved by the FEM
were always more accurate than those with the FDM. The
FEM was extended from the solution of the Schrédinger-
equation for HJ [2], to the solution of the Hartree-
Fock-Slater- [3], Hartree-Fock- [4], Dirac- [5], Dirac-Fock-
Slater- [6,7] and Dirac-Fock- [10] equations for diatomic
molecules. In [7,8] it was shown, that the Finite-Element-
Method is able to provide very accurate solutions of the
two-center Dirac-equation for very small molecules and
very heavy quasi-molecules. In the present letter the first
order Dirac-differential-equations are solved highly accu-
rately numerically for Hj and Th%79+, using the Finite-
Element-Method (FEM). The energies may be used as
benchmarks e.g. in molecular relativistic calculations for
calibrating basis sets. The main purpose of this paper how-
ever was to investigate the convergence behavior of rela-
tivistic solutions and develop strategies for FEM approx-
imations with high efficiency (accuracy vs. computational
effort) without the need for extended precision compu-
tation. The relativistic Dirac-Hamilton operator for one
electron molecules is defined as:
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with & and B being the Dirac matrices, and K the number
of atoms.

In order to get the Dirac-equation we used the single par-
ticle energy functional

I=(W|H-c|y)- (2)
The total energy is given by:
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As advantageous for two-center Coulombic problems we

describe them in elliptic hyperbolic coordinates ¢ and 7

Eioy =€+ Enuca where

T = gu(&n) cos(p), y= gu(f,n) sin(p), z= gfn
(4)

where u(&,n) = /(2 —1)(1 —n?) and R is the inter-
nuclear distance. The Coulomb singularity of point nu-

clei causes a singular behavior of the solution at the
nuclei of the form 7, 908 ell known from atomic caleu-
lations. Thus further singular coordinate transformations
(the back transform is non analytic) are needed (see Ap-

pendix A)

€ =1+ ¢y sinh™(s/2) + cosinh ™+ (5/2) + .5
0<s<oo (H)

n=1—c1s8in™(s/2) + cosin™+?(s/2) + ...;
0<t<m (6)

for m = 2,4,6,8,10, with ¢; =0 for z’>%~
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The standard regularization of relativistic problems by
the transformation r = exp(z) (r = radial space coor-
dinate, x = intrinsic coordinate) maps the interval [0, co)
to (—o0,00) and regularizes to infinite order. Thus one
is overdoing the needs of finite numerics, the price being
large numbers of needed grid points. Our transformations
keep the intervals and only partially regularize the singu-
lar behavior of the solution at the nuclei, but already allow
higher convergence orders depending on m, see Tables 5-9.
Singular transformations of the type lim,_o& — 1 ~ s
and limy_,or1 — 79 ~ t* have already successfully been
used before [5-7], but in contrast to equations (5, 6) they
violated the symmetry that £, 7 are equivalent parabolic
coordinates for s,t — 0. This lead to accuracies inferior
to the present ones, and did not exhibit clear extrapola-
tion properties. Because of axial symmetry the angular
coordinate ¢ is treated analytically by the Ansatz [11]

PL(s,t)elld==1/2)¢
wL(Sat, ©) ¢>2(s, )el(yz+1/2)<p

- (ws(sat,@) - i3 (s, t) eil==1/2)% (7)
i3 (s, t) elld=11/2)0

for the four component spinor of a single electron wave
function 1. Here j, = <jz> describes the projection of
the total angular momentum onto the inter-nuclear axis.
The spinor wave functions ¢ are expanded in terms of
the global functions G*(s,t) = G¥(s,t) G2(s,t), which are
defined over all elements, and shape-functions N;(s,t),
which are defined on each element [5]

¢"(s,t) = G*(s,1) Zu;?Nj(Svt) (8)

G 8 t GQ ZukN
(Gz%3)
Gi(s,t) = [(E - -1 7,

with “~” for k = 1,3 and “+” for k = 2,4,
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where [ denotes the left, and right center respectively.
N;(s,t) are complete polynomials of order p in s,t, but
transcendental functions in &, 7. Expansion (8) is inserted
into functional (2). In order to find the stationary value
of functional (2), it is differentiated with respect to the
coeflicients u;“ In contrast to previous works we used an
open boundary at s = spax and also at the symmetry
axis s = 0,t = 0, 7. This leads especially near the outer
boundary (s = smax) to an oscillatory behavior of the so-
lutions, but stays sufficiently small for higher numbers of
grid points and a slightly increased solution domain com-
pared to non-relativistic FEM calculations of similar qual-
ity. A better treatment from an analytical point of view

(9)
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of the boundary conditions by variation of the values at
the boundary has not been investigated yet, because this
would constitute a non-linear problem to be solved by ad-
ditional iterations. Besides increasing the complexity of
the calculations this might become a source of instabil-
ities. Finally we are led to a matrix eigenvalue problem
with a 4N x 4N symmetric matrices:

(H—eS)u; =0 (10)

where N is the number of grid points used for the dis-
cretization. The matrix H results from the first term of
the functional (2) and the matrix S from the second term.
Due to the local character of the shape-functions N;(s,t)
which are only defined on one element the matrices H
and S are very sparse. The sparseness is only partially ex-
ploited (hull of the matrix) as we solve the matrix equa-
tion (10) by a Cholesky decomposition and inverse vector
iteration. Thus the computer effort scales quadratically
with N.

2 Results and discussion

In Tables 1 and 2 we present the energies of the 1(1/2)g
for the Hy", Thi™" molecules at an inter-nuclear distance
R =2, R =2/ 90 a.u. respectively. In all our calculations
we set the speed of light to be 1/a = 137.0359895. The
two tables show the behavior of the energy error of the
first (1/2)g state depending on the number of finite ele-
ments and the number of given node points. Tables 1 and
2 were performed with 5th order polynomials and m = 4
for HJ and 7th order polynomials with m = 6 for Th179+
Bold dlglts don’t change any more when increasing the
number of node points. The radial dimension extended to
26 a.u. for Hy , and 0.14 a.u. for Th179Jr Relative accura-
cies better than 1 x 1072 for the ﬁrst 1/2 state have been
achieved. Further calculations with different FEM orders
and various m are shown in Tables 5-9.

For regular subdivisions and a sufficiently smooth so-
lutions, with the diameter of the elements proportional to
the root of N, the asymptotic convergence behavior (N to-
wards infinity) for a 2-dimensional finite element method
is known as'

FEipns — En = AE(N) <CON™14 (11)

where Fiys is the true value [12,13]. C may be determined
from two calculations with a differently large number of
grid points. For the singular Dirac-solutions an asymp-
totic error of the type equation (11) may still hold, but it
depends on the amount of partial regularization (given by
m) whether ¢ is dominated by the FEM error (¢ = 2p for
linear elements (p = 1), and ¢ = p otherwise, m sufficiently
large), or rather by the singular factor ;. Since 7, for
H;r is almost 1, one more or less finds ¢ = 2p, ¢ = p respec-
tively. But for T h%79+ Y1,k is such that convergence fac-
tors are close to multiples of half integers. For the asymp-
totic expansion one therefore should use two mixed forms:

! For first order FEM ¢ = 2p, for higher order ¢ = p, where
p is the FEM order.



O. Kullie and D. Kolb: High accuracy Dirac-finite-element (FEM) calculations for Hf and Thy™+ 169

Table 1. 1(1/2)g energies for Hf at R = 2 a.u., Smax = 26 a.u., m = 4, 5th order FEM, all values in a.u.

Elements / Points (N)  €1(1/2)4 €7(1/2)g !
32 /441 —1.1026495743536 —1.10264614727131
72 / 961 —1.1026418094468 —1.10264180213691
128 / 1681 —1.1026415809214 —1.10264158404107
200 / 2601 —1.1026415809207 —1.10264158123017
288 / 3721 —1.1026415808935 —1.10264158091607
392 / 5041 —1.1026415810126 —1.10264158102510
512 / 6561 —1.1026415810142 —1.10264158103099
648 / 8281 —1.1026415810320 —1.10264158103327
800 / 10201 —1.10264158103270 —1.102641581033498
968 / 12321 —1.10264158103164 —1.102641581033555
extrapol. value? —1.102641581033580

! Geometrically extrapolated values over iteration steps (— 00).
2 Logarithmically extrapolated values over effective number of grid points (N* — oo), where N* = (Ns — 1) (N; — 1), where
Ny ; are number of the grid points in s, ¢ direction respectively.

Table 2. 1(1/2)g energies for Th3 °% at R = 2/90 a.u., Smax = 0.14 a.u., m = 8, 7th order FEM, all values in a.u., see Table 1.

Elements / Points (N)  €1(1/2)4 €1(1/2)g !
32 / 841 —9504.8244669286 —9504.78244670023
72 / 1849 —9504.7566906673 —9504.75696913949
128 / 3249 —9504.7567523556 —9504.75675234274
200 / 5041 —9504.7567471712 —9504.75674715109
288 / 7225 —9504.7567469478 —9504.75674694615
392 / 9801 —9504.75676926377 —9504.756746926250
512 / 12769 —9504.756769235510  —9504.7567469235527
extrapol. value? —9504.7567469229

! Geometrically extrapolated values over iteration steps (— 00).
2 Logarithmically extrapolated values over effective number of grid points (N* — oo), where N* = (N, — 1) (N; — 1), where
Ny ; are number of the grid points in s, ¢ direction respectively.

one for integer ¢ stemming from the FEM asymptotic ex- log( )
pansion of the smooth part and one with real ¢ as the

leading term to extrapolate the singular contributions. As -85
there are usually not enough values of different numbers -4
of node points available to make such a complex extrapo- s
lation we used the fact that for certain m (e.g. m = 4) the '

leading singular power is close to an integer for ThggJr -5
also. Thus the two errors may reasonably well be com- 5.5

bined into one asymptotic expansion; one asymptotic ex-
pansion up to a certain order in 1/N also holds for ¢ < p
or p < q. The fact that we do have a unique scale in 55 3 e 7 .
our 2-dimensional calculations comes from an equidistant log(N™)
subdivision in the intrinsic coordinates s,¢ with the same _ 1794 . B
numbers of node points Ny = N;. Thus the scales are con- Fig. 1. Th,™", log(Ae/e) vs. log(N™), m = 2, 3rd order FEM.
nected hs = const. X h; with a constant factor independent
of N, hg = Smax/(Ns — 1), he = /(N — 1). So we did the
extrapolation with respect to the effective number of grid ~ferent numbers of node points one may test how well the
points N* = (N, — 1)(N; — 1). (asymptotic) equation (11) is satisfied.
For the reasonably large numbers N employed in this

Equation (11) as an asymptotic relation holds only ap- paper it holds already with good accuracy, as seen in Fig-

proximately for finite N. From three calculations with dif- ure 1, where we plot Ae/e (geometrically extrapolated
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Table 3. HJ convergence order g, geometrically extrapolated
values used.

Order/Coord. m=2 m=4 m=6 m=238

1 2 2 2 2
3 3 3 3
5 3 5% 5%

# not clearly exhibited.

Table 4. Th%79+ convergence order ¢, see Table 3.

Order/Coord. m=2 m=4 m=6 m=8 m=10

1 1.5 2 2

3 1.5 3 3

5 1.5 3 4.5%

7 1.5 3 4.5 6" 7

values) versus the effective number of grid points N* in a
doubly logarithmic diagram. The slope of the straight line
gives the exponent of the power law which is the conver-
gence order. Tables 3 and 4 show this convergence behav-
ior for various m and various FEM orders for the molecules
H;‘ , Th;79+ respectively. It is obvious from the tables that
only if the coordinate transformation allows it, i.e. the sin-
gularity is partially regularized to sufficiently high order,
the full convergence order of FEM can be exploited. Then
from equation (11) one expects the slope to be? 2 for linear
elements and p (the FEM order) for higher order of ele-
ments. More accurately extrapolated values are obtained
due to the logarithmic asymptotic expansions of the en-
ergy error by inverse powers or rational functions [14-17].
Extrapolation over the iteration number was done by ge-
ometric asymptotic expansions [14,15]. In the Tables 1, 2
and 5-9 extrapolation over grid points done with respect
to N*, the effective number of grid points. We found ratio-
nal extrapolations to be more stable than inverse powers,
so we used them throughout. Values up to the number of
points displayed in the first column were included in the
logarithmic extrapolation, g was taken from Tables 3 and
4 for H;‘ and Th%79+ respectively. Underlined digits are
gained by extrapolation.

In Figure 2 the upper group of lines represent geo-
metrically extrapolated direct calculated values, the lower
group of lines are in addition logarithmically extrapolated
over the grid points up to the various maximal effective
numbers of points N* displayed. Figures 2 and 3 (see
also Tabs. 5 and 7) show values of first order calculations
for various m, geometrically and logarithmically extrapo-
lated. We see in the diagrams how extrapolation behaves,
when the singularity is partially regularized: for m > 2, it
is efficient. Figure 4 (see also Tab. 8) shows that extrap-
olation can better work when the coordinate transforma-
tions and the FEM order are suitably chosen. For Th§79+,
m = 8 with 1st order FEM? and m = 6 with 3rd order
FEM and m = 6,8 with 7th order FEM (see Tab. 9) give

% See discussion of equation (11).
3 Very poor extrapolation gains as in non-rel. calculation
of [14].
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Fig. 2. Hj, log(Ae/e) vs. log(N*), m = 2,4,6,8, 1st order
FEM, N;.« = 6400, see text. The extrapolated values are from
Table 5.

Fig. 3. Thy™" log(Ae/¢) vs. log(N*), m = 2,4, 6,8, 1st order
FEM, N;.« = 8100, see text. The extrapolated values are from
Table 7.

Fig. 4. Thy™" log(Ae/e) vs. log(N*), m = 6,8, 3rd order
FEM, Nj.x = 9216, see text. The extrapolated values are
from Table 8.
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Table 5. H; €1(1/2)g values extrapolated over effective number of grid points N*, 1st order FEM and various coordinate
transformations. Underlined digits are gained by extrapolation.

576 —1.10264111553 —1.10264150667 —1.10264278450 —1.10268810614
900 —1.10264196950 —1.10264164198 —1.10264183213 —1.10264687519
1600 —1.10264144692 —1.10264156664 —1.10264158686 —1.10264161626

1764 —1.10264162507 —1.10264158627 —1.10264157623 —1.10264158861
2304 —1.10264152046 —1.10264157926 —1.10264157326  —1.10264157959
3600 —1.10264155934 —1.10264158114 —1.10264158089 —1.10264158114
4900 —1.10264157951 —1.10264158165 —1.10264158106 —1.10264158011
6400 —1.10264158086 —1.10264158085 —1.10264158120 —1.10264158107

—1.10264166215¢ —1.10264148020¢ —1.10264117296¢ —1.10264043678¢

4 geometrically extrapolated direct calculated values for last N*.

Table 6. H; €1(1/2)¢ values, 5th order FEM, see Table 5.

N* m=2 m=4 m=26

900 —1.102642736780 —1.102641719249 —1.102638899885
1600 —1.102641722561 —1.1026415699941 —1.102641504321
3600 —1.102641583963 —1.1026415808578 —1.102641562509
4900 —1.102641581697 —1.1026415810399 —1.102641582108
8100 —1.102641581188 —1.1026415810325 —1.102641581008
10000 —1.102641581000 —1.1026415810337 —1.102641581056

12100 —1.1026415810450 —1.102641581033580 —1.1026415810324
—1.1026415816748% —1.10264158103355¢ —1.1026415810312¢

Table 7. Th%79+ €1(1/2)g values, 1st order FEM, see Table 5.

N* m =2 m=4 m =6 m=2_8

576 —9504.75114623 —9504.75233313  —9504.75683307 —9504.765865
900 —9504.71502758 —9504.75651064 —9504.75666472 —9 504.75096721
1600 —9504.75866813 —9504.75670619 —9504.75675875 —9504.75675855
1760 —9504.74644564 —9504.75678214 —9504.75674367 —9504.75673113
2304 —9504.75835048 —9504.75674361 —9504.75674772 —9504.75675001
3600 —9504.75787360 —9504.75674937 —9504.75674606 —9 504.75674687
4900 —9504.75473381 —9504.75674858 —9504.75674664 —9504.75674713
6400 —9504.75737659 —9504.75674571 —9504.75674675 —9504.75674701
7056 —9504.75558213 —9504.75674611 —9504.75674716 —9504.756746975
—9504.77675486¢ —9504.75952087Y —9504.76159261¢ —9504.764892757¢

Table 8. Thé79+ €1(1/2)g values, 3rd order FEM, see Table 5.

N~ m=2 m=4 m==6 m=2_8

576 —9504.67010417 —9504.71199453 —9504.9296417 —9 504.68598090

900 —9504.75529360 —9504.75651005 —9504.71549429 —9504.86264417
1764 —9504.75628204 —9504.75673691 —9504.7577209 —9504.76349584
2304 —9504.75652589 —9504.75676551 —9504.75694084 —9504.75566638
3600 —9504.75653871 —9504.75674757 —9504.75675043 —9504.75729697
7056 —9504.75670829 —9504.75674634 —9504.75674707 —9504.75674232
8100 —9504.75675565 —9504.75674707 —9504.75674691 —9504.75674228

9216 —9504.75671753 —9504.756746917 —9504.756746920 —9504.756746575
—9504.76717904¢ —9504.75676014¢ —9504.75676110° —9504.75677907°
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Table 9. Th%79+ €1(1/2)g values, 7th order FEM, see also Table 5.

N* m=4 =6 m=38
784 —9504.777163068 —9504.756481450
1764 —9504.756779596 —9504.756727202 —9504.756777125
4900 —9504.756746735 —9504.756746913 —9504.756746770
7056 —9504.756746861 —9504.7567469223 —9504.756746921
9604 —9504.756746915 —9504.7567469224 —9504.7567469227
12,544 —9504.756746923 —9504.7567469210 —9504.7567469229

—9504.75674974624

—9504.756746928¢

—9504.7567469235¢

Table 10. Comparison of the €,(1/2)g energies with literature values.

Sp. of light Thy ™t HT

137.0359895 —9504.756746923 —1.10264158103358

137.0359895  —9504.7567155 [22] —1.102641579334 [21]

137.03602 —9498.98 [23] —1.102565 [23]

137.0359895  —9504.756696 [24] —1.1026415801 [24]
—9504.7497 [25] —1.102481 [26]
—9504.7567151> (18]

! This value results from adding their AE,q. to their ES,; (non-rel. value); one notes however that their AF,q. is more

accurate and reaches almost the corresponding FEM value [5].
2 Solution od Dirac-eq. based on the Bloch equation of DPT.

log(47¢)

)
o O »

-12 — s by=0

3.4 3.6
log(N"*)

—A—— b1 =1.4

Fig. 5. H log(Ae/e) vs. log(N*), m = 6, 5th order FEM,
Niax = 4970. Parameter b1 = 0 (no scaling, logarithm. extrap.
values are from Tab. 6), and by = 1.4. For the same b; the
upper line connects geometrically extrapolated values, and the
lower line connects values, which logarithmically extrapolated
in addition.

the best values after extrapolation. For H2+ , m = 4 with
5th order FEM gives the best results; extrapolation in this
case can only slightly improve them as one notices from
Table 14.

4 The improvement is only for large grid point numbers, the
effect of geometrical and logarithmic extrapolation are seen in
Tables 1 and 6 for m = 4.

Scaling transformation

We have seen that the singular coordinate transformation
equations (5, 6) can partially regularize the singularity at
the nuclei and thus allow high convergence orders. But
they affect the element density far away from the singular
point and make this area sparse. The scaling transforma-
tion (see Appendix A.2) varies the element density and
may raise it in the distant regions but still remains linear
in the neighborhood of the singularity. The effect on the
obtained accuracy is displayed for H;r in Figure 5. There
we compare a bth order calculation for singular transfor-
mation m = 6, with b; = 0 (no scaling, see Tabs. 1 and
6), and with b; = 1.4, for the scaling transformation pa-
rameter. We display extrapolated and non-extrapolated
values. One reaches a higher accuracy for the same num-
ber of grid points N; conversely for the same accuracy
one needs a smaller number of grid points, and thus less
computational effort.

3 Conclusion

We presented highly accurate FEM solutions of the molec-
ular one-electron Dirac-equation for a very light sys-
tem Hi and a very heavy system Th§79+ thus spanning
the full range from quite non-relativistic to highly rel-
ativistic quasi-molecules. Comparing the non-relativistic
FEM-solutions of the one electron Schrodinger-equation,
2 to 3 times more points are needed here in the relativis-
tic case for comparable accuracies. Despite the dramatic
improvements in efficiency (accuracy wvs. effort) of the
presented calculations, techniques scaling linear with the
number of variables for the solutions of the FEM matrix
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equations, e.g. FEM multi-grid, as in non-relativistic FEM
applications already successfully employed [20] should fur-
ther strongly reduce the present computer effort. This
is needed to overcome the still unsatisfactory high com-
puter time and storage requirements of present relativis-
tic FEM calculations, scaling with N2. It has been al-
ready shown [9] that a relativistic LCAO defect correc-
tion scheme (LCAO-DKM) may give a considerable im-
proved accuracy for the same number of FEM-grid points
(unknowns) and thus allows for further efficiency gains.
These efficiency considerations do not prevent highly ac-
curate benchmark values, but they limit the size of the
electronic systems calculable with reasonable computer
resources. Very attractive are alternative 2-spinor varia-
tionally bound formulations of the relativistic one-electron
problem [18,19]. E.g. in [18] a rather high accuracy in a
Gaussian basis for Thy"”* has been achieved. Besides re-
ducing the number of unknowns by a factor of 2 their
analogy to non-relativistic formulations should give the
fast multi-grid method for the solution of the FEM ma-
trix equations about the same efficiency as in truly non-
relativistic applications [20].

This work was partially supported by the Deutsche Forschungs-
gemeinschaft (DFG).

Appendix A: Coordinate transformations

The following coordinate transformations are employed.

A.1 Singular transformations

m =2: £ =1+ 2sinh’(s/2) = cosh(s),
n=1—2sin’(t/2) = cos(t)
E=1+ Gsinh4(s/2) + 4sinh6(5/2)
n=1—6sin*(t/2) 4+ 4sin®(t/2)
: € = 14 20sinh®(s/2) + 30sinh®(s/2) + 12sinh'%(s/2)
n =1—20sin®(t/2) 4+ 30sin®(¢/2) — 12sin'°(t/2)
: € =1+ 70sinh®(s/2) + 168sinh'%(s/2)
4140 sinh'?(s/2) + 40 sinh**(s/2)
n=1—"70sin®(t/2) + 168sin'’(t/2)
—140sin"?(¢/2) + 40sin**(¢/2)
€ =14 252sinh'%(s/2) + 840 sinh'?(s/2)
41080 sinh'*(s/2) 4 630 sinh'®(s/2)
4140 sinh'®(s/2)
n=1-—252sin"(t/2) + 840sin'?(t/2)
—1080sin'*(t/2) 4 630sin'®(¢/2) — 140sin"®(¢/2)

where 0<s<oo; <t<m.

They have the following simple derivative forms®:

d¢/ds = D,, sinh™ *(s), dn/dt = D,, sin™ *(t).

5 One can integrate the forms, with Mathematica for exam-
ple, to see that these transformation are connect to the hyper
geometrical function 2F1, and after some manipulations one
become the coordinate transformations for the varies m.

173
A.2 Scaling transformations

o sinh(bl S) . 2 b1 S
S = Smax Lanh(bl Smax) 2 sinh 5 s

po I [simhlbat) e (b2t
2 [tanh(b2 %) 2

Smax /2 .
b = , with one free parameter.
! tanh (b1 Smax) 2tanh(bg%) P
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